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Abstract
We consider a state-constrained optimal control problem of a system of two non-
local partial differential equations, which is an extension of the one introduced in a
previous work in mathematical oncology. The aim is to control the tumor size through
chemotherapy while avoiding the emergence of resistance to the drugs. The numerical
approach to solve the problemwas the combination of direct methods and continuation
on discretization parameters, which happen to be insufficient for themore complicated
model, where diffusion is added to account for mutations. In the present paper, we
propose an approach relying on changing the problem so that it can theoretically
be solved thanks to a Pontryagin’s maximum principle in infinite dimension. This
provides an excellent starting point for a much more reliable and efficient algorithm
combining directmethods and continuations. The global idea is newand can be thought
of as an alternative to other numerical optimal control techniques.
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1 Introduction

The motivation for this work is the article [1], itself initiated by [2]. In the former,
the subject was the theoretical and numerical analysis of an optimal control problem
coming from oncology. Through chemotherapy, it consists of minimizing the number
of cancer cells at the end of a given therapeutic window. The underlying model was
an integro-differential system for the time evolution of densities of cancer and healthy
cells, structured by their continuous level of resistance to chemotherapeutic drugs.
The model took into account cell proliferation and death, competition between the
cells, and the effect of chemotherapy on them. The optimal control problem also
incorporated constraints on the doses of the drugs, as well as constraints on the tumor
size and on the healthy tissue.

In [1], the numerical resolution of the optimal control problem was made through a
direct method, thanks to a discretization both in time and in the phenotypic variable. It
led to a complex nonlinear constrained optimization problem, for which even efficient
algorithms will fail for large discretization parameters because they require a good
initial guess. To overcome this, the idea was to perform (with AMPL and IPOPT, see
below) a continuation on the discretization parameters, starting from low values (i.e.,
a coarse discretization) for which the optimization algorithm converges regardless of
the starting point.

A clear optimal strategy emerged from these numerical simulations when the final
time was increased. It roughly consists of first using as few drugs as possible during
a long first phase to avoid the emergence of resistance. Cancer cells would hence
concentrate on a sensitive phenotype, allowing for an efficient short second phase
with the maximum tolerated doses.

The model of [1] did not include epimutations, namely heritable changes in DNA
expression which are passed from one generation of cells to the others, which are
believed to be very frequent in the lifetime of a tumor. Our aim here is to numerically
address the optimal control problem with the epimutations modeled through diffusion
operators (Laplacians), in order to test the robustness of the optimal strategy.

However, the previous numerical technique already failed (evenwithoutLaplacians)
to get fine discretizations when the final time is very large: The optimization stops
converging when the discretization parameters are large. The values reached for the
discretization in time were enough to observe the optimal structure, in particular all
the arcs that were expected for theoretical reasons.

The addition of Laplacians significantly increases the runtime and again fails to
work once the discretization parameters are too large when the final time itself is
large, and some arcs become difficult to observe. We thus have to find an alternative
method to see whether the optimal strategy found in [1] is robust with respect to adding
the effect of epimutations.

This article is devoted to the presentation of a method which, up to our knowledge,
is new. In our case, it provides a significant improvement in runtime and precision,
and shows that the optimal strategy keeps an analogous structure when epimutations
are considered. The method relies on the two following steps:
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• first, simplify the optimal control problem up to a point where we can show that,
thanks to a Pontryagin’s maximum principle (PMP) in infinite dimension, the
optimal controls are bang–bang and thus can be reduced to their switching times,
which are very easy to estimate numerically. This is equivalent to setting several
coefficients to 0 in the model.

• second, perform a continuation on these parameters on the optimization problems
obtained with a direct method, starting from the simplified problem all the way
back to the full optimal control problem.

It allows us to start the homotopymethod on this simplified optimization problemwith
an already fine discretization, actuallymuch finer than themaximal valueswhich could
be obtained with the previous homotopy method. We also believe that the theoretical
result obtained for the simplified optimal control problem can serve as the starting step
for many other optimal control problems of related models in mathematical biology.

Numerical Optimal Control and Novelty of the Approach Discretizing the time vari-
able, control and state variables to approximate a control problem for an ODE (which
is an optimization problem in infinite dimension) by a finite-dimensional optimization
problem has now become the most standard way of proceeding. These so-called direct
methods thus lead to using efficient optimization algorithms, for example, through the
combination of automatic differentiation softwares (such as the modeling language
AMPL, see [3]) and expert optimization routines (such as the open-source package
IPOPT, see [4]).

Another approach is to use indirect methods, where the whole process relies on
a PMP, leading to a shooting problem on the adjoint vector. Numerically, one thus
needs to find the zeros of an appropriate function, which is usually done through a
Newton-like algorithm. For a comparison of the advantages and drawbacks of direct
and indirect methods, we refer to the survey [5].

For both direct and indirect methods, the numerical problem shares at least the dif-
ficulty of finding an initial guess leading to convergence of the optimization algorithm
or the Newton algorithm, respectively. (It is well known that Newton algorithms can
have a very small domain of convergence.) To tackle this issue in the case of indirect
methods, it is very standard to use homotopy techniques, for instance, to simplify the
problem so that one can have a good idea for a starting point as in [6,7], or to change the
cost in order to benefit from convexity properties, as in [8,9]. Besides, when studying
optimal control problem for ODE systems, a common approach is the use of so-called
hybrid methods, in order to take advantage from the better convergence properties of
the direct method and the high accuracy provided by the indirect method. We refer to
[5,10–12] for further developments on this subject.

We have found the combination of direct methods and continuation (such as the
one done in [1]) to be much less common in the literature, see, however, [10]. For
a mathematical investigation of why continuation methods are mathematically valid,
see [5].

It is, however, believed that direct methods typically lead to optimization problems
with several local minima [5], as it could happen for the starting problem (with low
discretization), which has yet no biologicalmeaning. This implies one important draw-
back of a continuation on discretization parameters with direct methods: Although the
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algorithm will quickly converge in such cases, one cannot a priori exclude that one
will get trapped in local minima that are meaningless, with the possibility for such
trapping to propagate through the homotopy procedure.

Our approach of simplifying the optimal control problem so that it can be analyzed
with theoretical tools such as a PMP is a way to address the previous problem and to
decrease the computation time. The simplified optimal control problem, once approx-
imated by a direct method, will indeed efficiently be solved even with a very refined
discretization. Therefore, another original aspect of our work, due to the complex PDE
structure of the model, is the use of the PMP in view of building an initial guess for the
direct method, in contrast with the hybrid approach we described for ODE systems,
where direct methods serve to initialize shooting problems.

More generally, we advocate for the strategy of trying to simplify the problem,
testing whether a PMP can provide a good characterization of the optimal controls.
Then, continuation with direct methods is performed to get back to the original and
more difficult one. We believe that this can always be tried as a possible strategy to
solve any optimal control problem (ODE or PDE) numerically.

Outline of the Paper The paper is organized as follows: Section 2 is devoted to a
detailed presentation of the optimal control problem and the results that were obtained
in [1]. Section 3 presents the simplified optimal control problem together with the
application of a Pontryagin’s maximum principle in infinite dimension which almost
completely determines the optimal controls. In Sect. 4, we thoroughly explain how
direct methods for the optimal control of PDEs and continuations can be combined to
solve a given PDE optimal control problem.We then combine these techniques and the
result of Sect. 3 to build an algorithm solving the complete optimal control problem.
In Sect. 5, the numerical simulations obtained thanks to the algorithm are presented.
Finally, we will give some perspectives in Sect. 6 before concluding in Sect. 7.

2 Modeling Approach and Optimal Control Problem

2.1 Modeling Approach

Let us first explain the modeling approach, which is based on the classical logistic
ODE

dN

dt
= (r − dN ) N .

In this setting, individuals N (t) have a net selection rate r , together with an addi-
tional death term dN increasing with N : The more individuals, the more death due to
competition for resources and space.

If the individuals have different selection and death rates r(x) and d(x) depending
on a continuous variable x which we will call phenotype (the size of the individual,
for example), then a natural extension to the previous model is to study the density
of individuals n(t, x) of phenotype x , at time t , satisfying the integro-differential
equation
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∂n

∂t
(t, x) = (

r(x) − d(x)ρ(t)
)
n(t, x),

where

ρ(t) :=
∫

n(t, x) dx .

At this stage, individuals do not change phenotype over time, nor can they give birth
to offspring with different phenotypes. Accounting for such a possibility consists
in modeling random mutations (respectively, random epimutations), i.e., heritable
changes in the DNA (respectively, heritable changes in DNA expression). The model
is complemented with a diffusion term and takes the form

∂n

∂t
(t, x) = (

r(x) − d(x)ρ(t)
)
n(t, x) + β�n(t, x),

together with Neumann boundary conditions if x lies in a bounded domain, thus
becoming a non-local partial differential equation because of the integral term ρ.

Such so-called selection–mutation models are actively studied as they represent
a suitable mathematical framework for investigating how selection occurs in various
ecological scenarios [13–15], thus belonging to the branch of mathematical biology
called adaptive dynamics.When β = 0, the previousmodel indeed leads to asymptotic
selection: n converges to a sum of Dirac masses located on the set of phenotypes on
which r

d reaches its maximum [1,15]. In particular, if this set is reduced to a singleton

x0, it holds that
n(t,·)
ρ(t) weakly converges to a Dirac at x0 as t goes to +∞.

2.2 The Optimal Control Problem

The model considered in this paper is an extension of the one studied in [1] by the
addition of epimutations. (It is believed that mutations occur on a too long time-scale
and are consequently neglected [16].) It describes the dynamics of two populations
of cells, healthy and cancer cells, which are both structured by a trait x ∈ [0, 1]
representing resistance to chemotherapy, which ranges from sensitiveness (x = 0)
to resistance (x = 1). x is taken to be a continuous variable because resistance to
chemotherapy can be correlated with biological characteristics which are continuous,
see [16] for more details. Chemotherapy is modeled by two functions of time u1 and
u2, standing for the rate of administration of cytotoxic drugs and cytostatic drugs,
respectively. The first type of drug actively kills cancer cells, while the second slows
down their proliferation.

The system of equations describing the time evolution of the density of healthy
cells nH (t, x) and cancer cells nC (t, x) is given by

∂nH

∂t
(t, x) =

[
rH (x)

1 + αHu2(t)
− dH (x)IH (t) − u1(t)μH (x)

]
nH (t, x) + βH�nH (t, x),

∂nC
∂t

(t, x) =
[

rC (x)

1 + αCu2(t)
− dC (x)IC (t) − u1(t)μC (x)

]
nC (t, x) + βC�nC (t, x),
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starting from an initial condition (n0H , n0C ) in C([0, 1])2, with Neumann boundary
conditions in x = 0 and x = 1.

Let us describe in more detail the different terms and parameters appearing above,
with the functions rH , rC , dH , dC , μH μC all continuous and non-negative on [0, 1],
with rH , rC , dH , dC positive on [0, 1].
• The terms rH (x)

1+αHu2(t)
, rC (x)
1+αCu2(t)

stand for the selection rates lowered by the effect
of the cytostatic drugs, with

αH < αC .

• The non-local terms dH (x)IH (t), dC (x)IC (t) are added death rates to the compe-
tition inside and between the two populations, with

IH := aHHρH + aHCρC , IC := aCCρC + aCHρH

and as before

ρi (t) =
∫ 1

0
ni (t, x) dx, i = H ,C .

We make the important assumption that the competition inside a given population
is greater than between the two populations:

aHC < aHH , aCH < aCC .

• The terms μH (x)u1(t), μC (x)u1(t) are added death rates due to the cytotoxic
drugs. Owing to the meaning of x = 0 and x = 1, μH and μC are taken to be
decreasing functions of x .

• The terms βH�nH (t, x) and βC�nC (t, x) model the random epimutations, with
their rates βH , βC such that

βH < βC ,

because cancer cells mutate faster than healthy cells.

Finally, for a fixed final time T , we consider the optimal control problem (denoted
in short by (OCP1)) of minimizing the criterion

λ0
1

T

∫ T

0
ρC (s) ds + (1 − λ0)ρC (T ) (1)

as a function of the L∞ controls u1, u2 subject to L∞ constraints for the controls and
two state constraints on (ρH , ρC ), for all 0 � t � T :

• The maximum tolerated doses cannot be exceeded:

0 � u1(t) � umax
1 , 0 � u2(t) � umax

2 .
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• The tumor cannot be too big compared to the healthy tissue:

ρH (t)

ρH (t) + ρC (t)
� θHC , (2)

with 0 < θHC < 1.

• Toxic side effects must remain controlled:

ρH (t) � θHρH (0), (3)

with 0 < θH < 1.

Optimal control problems applied to cancer therapy have started being considered
long ago, see [17] for a complete presentation. However, the usual way of taking
resistance into account is to consider that cells are either resistant or sensitive, leading
to ODE models, as, for example, in [18–22]. Considering both a continuous modeling
of resistance and the effect of chemotherapy is more recent, as in [1,16,23–25]. We
also mention some cases where an additional space variable is considered [2,26].

Remark 2.1 Note that in the definition of the cost (1), the choice of λ0 depends on
the relative importance one wishes to give to the terms ρC (T ) and

∫ T
0 ρC (s) ds/T .

By choosing λ0 = 0 as in [1], the criterion to minimize becomes ρC (T ) and can be
of interest in practice. In that case, even if the cost does no longer account for the
evolution of ρC (·) over the time interval [0, T ], the size of the tumor cannot be too
big as it remains controlled by the constraint (2):

ρH (t)

ρH (t) + ρC (t)
� θHC .

2.3 Previous Results for �0 = 0

In [1], we studied this system and the optimal control problem both theoretically and
numerically in the case of selection exclusively, namely for βH = βC = 0, while
minimizing the number of tumor cells at final time, i.e., with λ0 = 0 in the cost (1).

First, we proved that for constant controls (i.e., constant doses), the generic behavior
is the convergence of both densities to Dirac masses. When these doses are high,
the model thus reproduces the clinical observation that high doses usually fail at
controlling the tumor size on the long run. They might indeed initially lead to a
decrease in the overall cancerous population. However, this is the consequence of
only the sensitive cells being killed, while the most resistant cells are selected. (In our
mathematical framework, this corresponds to the cancer cell density concentrating
on a resistant phenotype.) Further treatment is then inefficient, and the tumor starts
growing again.

As for the optimal control problemwhich is our focus in thiswork, themain findings
without diffusionwere the following:When the final time T becomes large, the optimal
controls acquire some clear structure which is made of two main phases.
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• First, there is a long phase with low doses of drugs (u1 = 0 with our parameters),
along which the constraint (2) quickly saturates. At the end of this first long arc,
both densities have concentrated on a sensitive phenotype.

• Then, there is a second short phase, which is the concatenation of two arcs. The
first one is a free arc (no state constraint is saturated) along which u1 = umax

1
and u2 = umax

2 , with a quick decrease in both cell numbers ρH and ρC , up until
the constraint on the healthy cells (3) saturates. The last arc is constrained on (3)
with boundary controls (u2 = umax

2 with our parameters), allowing for a further
decrease in ρC .

In otherwords, the optimal strategy is to let the cell densities concentrate on sensitive
phenotypes so that the full power of the drugs can efficiently be used. This strategy is
followed as long as the healthy tissue can endure it, and then, lower doses are used to
keep on lowering ρC while still satisfying the toxicity constraint.

3 Resolution of a SimplifiedModel

3.1 SimplifiedModel for one Population with no State Constraints

We here introduce the simpler optimal control problem. Its precise link with the initial
optimal control (OCP1) will be explained in Sect. 4. It is based on the equation

∂nC
∂t

(t, x) =
[

rC (x)

1 + αCu2(t)
− dC (x)ρC (t) − μC (x)u1(t)

]
nC (t, x), (4)

starting from n0C , where ρC (t) = ∫ 1
0 nC (t, x) dx . We denote by (OCP0) the optimal

control problem
min

(u1,u2)∈U
ρC (T ) (5)

where U is the space of admissible controls

U := {
(u1, u2) ∈ L∞([0, T ],R) such that 0 � u1 � umax

1 ,

0 � u2 � umax
2 , a.e. on [0, T ]} .

Note that we choose λ0 = 0 in the cost (1), in order for the Pontryagin’s maximum
principle to yield an exploitable result.

3.2 AMaximum Principle in Infinite Dimension

General Statement Let T be a fixed final time, X be a Banach space and n0 ∈ X ,U be
a separable metric space. We also consider two mappings f : [0, T ] × X × U → X
and f 0 : [0, T ] × X ×U → R.
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We consider the optimal control problem of minimizing an integral cost, with a free
final state n(T ):

inf
u∈U

J (u(·)) :=
∫ T

0
f 0(t, n(t), u(t)) dt,

where y(·) is the solution1 of

ṅ(t) = f (t, n(t), u(t)), n(0) = n0.

In [27, Chapter 4], necessary conditions for optimality are presented, for such
problems. (They are actually presented in [27] in a more general setting, but for the
sake of simplicity, we restrict ourselves to the material required to solve (OCP0).) The
set of these conditions is referred to as a Pontryagin’s maximum principle (PMP).

Under appropriate regularity assumptions on f and f 0, it states that any optimal
pair (n(·), u(·)) must be such that there exists a nontrivial pair (p0, p(·)) ∈ R ×
C([0, T ], X) satisfying

p0 � 0, (6)

ṗ(t) = −∂H

∂n
(t, n(t), u(t), p0, p(t)), (7)

H(t, n(t), u(t), p0, p(t)) = max
v∈U H(t, n(t), v, p0, p(t)), (8)

where the Hamiltonian H is defined as H(t, n, u, p, p0) := p0 f 0(t, n, u) +
〈p, f (t, n, u)〉.
Remark 3.1 If the final state is free, (6) can be improved to p0 < 02 and we have the
additional transversality condition:

p(T ) = 0. (9)

Besides, if the final state was fixed, there would be additional assumptions to check in
order to apply the PMP, assumptions that are automatically fulfilled whenever n(T )

is free. We refer to [27, Chapter 4–Section 5] for more details on this issue.

Application to the Problem (OCP0). By applying the PMP, we derive the following
theorem on the optimal control structure.

1 Note that the evolution equation has to be understood in the mild sense

n(t) = n0 +
∫ t

0
f (s, n(s), u(s)) ds.

2 An extremal in the PMP is said to be normal (resp. abnormal) whenever p0 �= 0 (resp. p0 = 0). Here, it
means that there is no abnormal extremal.
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Theorem 3.1 Let (nC (·), u(·)) be an optimal solution for (OCP0). There exist t1 ∈
[0, T [ and t2 ∈ [0, T [ such that

u1(t) = umax
1 1[t1,T ], u2(t) = umax

2 1[t2,T ].

Proof Let us define U := {
u = (u1, u2) such that 0 � u1 � umax

1 , 0 � u2 � umax
2

}
.

Given a function u ∈ L∞([0, T ],U ), the associated solution of Eq. (4) belongs to
C([0, T ],C(0, 1)), which can be seen as a subset of C([0, T ], L2(0, 1)). We define
X := L2(0, 1).

First, as the initial number of cells is prescribed, we notice that minimizing the cost
ρC (T ) is equivalent to minimizing the cost ρC (T )−ρC (0), and it can be written under
the integral form:

ρC (T ) − ρC (0) =
∫ T

0
ρ′
C (t) dt

=
∫ T

0

∫ 1

0
∂t nC (t, x) dx dt

=
∫ T

0

∫ 1

0

[
rC (x)

1 + αCu2(t)
− dC (x)ρC (t)

− μC (x)u1(t)

]
nC (t, x) dx dt

Thus, in view of applying the PMP, we define the function f 0 : X ×U → R by

f 0(n, u1, u2) :=
∫ 1

0

[
rC (x)

1 + αCu2
− dC (x)ρ − μC (x)u1

]
n(x) dx,

where ρ := ∫ 1
0 n, and the Hamiltonian is then defined by

H(n, u1, u2, p, p
0) := p0 f 0(n, u1, u2)

+
∫ 1

0
p(x)

[
rC (x)

1 + αCu2
− dC (x)ρ − μC (x)u1

]
n(x) dx .

Since (nC (·), u(·)) is optimal, there exists a nontrivial pair (p0, p(·)) ∈ R ×
C([0, T ], X), such that the adjoint Eq. (7) writes:

∂ p

∂t
(t, x) = −

[
rC (x)

1 + αCu2(t)
− dC (x)ρ − μC (x)u1(t)

]
·
[
p(t, x) + p0

]

+
∫ 1

0
d(x)n(t, x)

[
p(t, x) + p0

]
dx .

Owing to Remark 3.1, we know that p0 < 0.
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Let us set p̃ := p + p0, which satisfies

∂ p̃

∂t
(t, x) = −

[
rC (x)

1 + αCu2(t)
− dC (x)ρ − μC (x)u1(t)

]
p̃(t, x)

+
∫ 1

0
d(x)n(t, x) p̃(t, x) dx .

The transversality Eq. (9) yields p(T , ·) = 0, i.e., p̃(T ) = p0.
Then, in order to exploit the maximization condition (8), we can split the Hamilto-

nian as

H(t, nC (t), u1(t), u2(t), p(t), p
0)

= −
∫ 1

0
p(t, x)dC (x)ρ(t)nC (t, x) dx − u1(t)φ1(t) + φ2(t)

1 + αCu2(t)
,

where the two switching functions are defined as

φ1(t) :=
∫ 1

0
μC (x)nC (t, x) p̃(t, x) dx,

φ2(t) :=
∫ 1

0
rC (x)nC (t, x) p̃(t, x) dx .

Thus, we derive the following rule to compute the controls :

• If φ1(t) > 0 (resp. φ2(t) > 0), then u1(t) = 0 (resp. u2(t) = 0).
• If φ1(t) < 0 (resp. φ2(t) < 0), then u1(t) = umax

1 (resp. u2(t) = umax
2 ).

We compute the derivative of the switching function:

φ′
1(t) =

∫ 1

0
μC (x) (∂t nC (t, x) p̃(t, x) + nC (t, x)∂t p̃(t, x)) dx

=
(∫ 1

0
μC (x)nC (t, x) dx

)
·
(∫ 1

0
dC (x)nC (t, x) p̃(t, x) dx

)
.

We know that
∫ 1
0 μC (x)nC (t, x) dx > 0 so that the sign of φ′

1(t) is given by the sign
of : ∫ 1

0
dC (x)nC (t, x) p̃(t, x) dx .

Let us set ψ1(t) := ∫ 1
0 dC (x)nC (t, x) p̃(t, x) dx . The same computation as before

yields

ψ ′
1(t) =

(∫ 1

0
dC (x)nC (t, x) dx

)
ψ1(t).
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Therefore, the sign of ψ1(t) is constant, given by the sign of

ψ1(T ) =
∫ 1

0
dC (x)nC (T , x) p̃(T , x) dx

=
∫ 1

0
dC (x)nC (T , x)p0 dx

< 0

since p0 < 0. This implies that the function φ1 is decreasing on [0, T ]. Since at
the final time, φ1(T ) < 0, we deduce the existence of a time t1 ∈ [0, T ) such that
φ1(t) � 0 on [0, t1], and φ1(t) < 0 on [t1, T ]. The same computation yields the same
result for φ2, for some time t2 ∈ [0, T ]. 	


4 The Continuation Procedure

4.1 General Principle

We here recall the principle of direct methods and of continuations for optimization
problems.TogetherwithTheorem3.1,we thenderive an algorithm to solve the problem
(OCP1).

On Direct Methods for PDEs Let us give an informal presentation of the principle of
a direct method for the resolution of the optimal control of a PDE. Assume that we
have some evolution equation written in a general form on [0, T ] × [0, 1] as

∂n

∂t
(t, x) = f (t, n(t), u(t)) + An(t, x), n(0) = n0,

where T is a fixed time, A is some operator on the state space, f is some function
which might depend non-locally on n, u a scalar control, t ∈ [0, T ], and x ∈ [0, 1] is
the space or phenotype variable. The possible boundary conditions are contained in
the operator A, which in our case will be the Neumann Laplacian.

Consider the optimal control problem

inf
u∈U

g(n(T )),

where T is fixed, as a function of u ∈ U := {u ∈ L∞([0, T ],R), 0 � u(t) �
umax on [0, T ]}.

Further assume that we have discretized this PDE both in time and space through
uniform meshes 0 < t0 < t1 < · · · < tNt := T , 0 =: x0 < x1 < · · · < xNx := 1,
and that we are given some discretizations of the operator A (resp. the function f , g)
denoted by Ah (resp. fh , gh), where h := 1

Nx
. With a Euler scheme in time, if one

writes formally n(ti , x j ) ≈ ni, j , u(ti ) ≈ ui and ni := (ni, j )0� j�Nx , we are faced
with the optimization problem
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inf
ui , 0�i�Nt

gh
(
nNt

)
,

subject to the constraints

ni+1, j = ni, j + h fh, j (ti , ni, j , ui ) + hAh(ni ), ni,0 = n0(xi ), 0 � ui � umax

for all 0 � i � Nt , 0 � j � Nx . Note that fh, j (ti , ni, j , ui ) stands for the function
fh(ti , ni, j , ui ) evaluated at x j .

On Continuation Methods for Optimization Problems The optimal control problem of
a PDEbecomes a finite-dimensional optimization problemonce approximated through
a direct method, such as the one presented above. Let us denote P1 this problem. As
already mentioned in the introduction, the numerical resolution of such a problem
requires a good initial guess for the optimal solution. The idea of a continuation is to
deform the problem to an easier problem P0 for which we either have a very good a
priori knowledge of the optimal solution, or expect the problem to be solved efficiently.

One then progressively transforms the problem back to the original one thanks to
a continuation parameter λ, thus passing through a series of optimization problems
(Pλ). At each step of the procedure, the optimization problem Pλ+dλ is solved by
taking the solution to Pλ as an initial guess.

4.2 From (OCP1) to (OCP0)

Let us consider (OCP1) and formally set the following coefficients to 0:

βH , βC , aCH , θH , θHC .

Note that by setting βH and βC to 0, we also imply that the Neumann boundary
conditions are no longer enforced.

When doing so, the equations on nC and nH are no longer coupled since the con-
straints do not play any role and the interaction itself (through aCH ) is switched off.
Consequently, the optimal control problem with all these coefficients set to 0 is pre-
cisely (OCP0).

We now define a family of optimal control problems (OCPλ) where λ ∈ R
5 has

each of its components between 0 and 1. It is a vector because several consecutive
continuations will be performed (in an order to be chosen) on the different parameters.
For λ = (λi )0�i�4, we use the subscript λ for the parameters associated with the
optimal control problem (OCPλ), and they are defined by:

β
(λ)
H := λ1βH , β

(λ)
C := λ1βC , a(λ)

CH := λ2aCH , θ
(λ)
CH := λ3θCH , θ

(λ)
H := λ4θH ,

In other words, λ1, λ2, λ3 and λ4 stand for the continuations on the epimutations rates,
the interaction coefficient aCH , the constraint (2) and the constraint (3), respectively.
λ0 accounts for the balance between the terms in the cost (1). Note that the parameters
λ1, λ2, λ3 and λ4 are meant to be brought from 0 to 1, whereas the value of λ0 may at
the end lie in the interval [0, 1].
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4.3 General Algorithm

Let us now explain the general approach based on the previous considerations.

Final Objective and Discretization Our final aim is to solve (OCP1) numerically,
with T large, and a very fine discretization in time (Nt is taken to be large): T , Nt

and Nx are thus fixed to certain given values. To do so, we will solve successively
several problems (OCPλ) with the same discretization parameters. Following the
general method introduced about direct methods for PDEs, numerically solving an
intermediate optimal control problem (OCPλ) for a given λ will mean solving the
resulting optimization problem. To be more specific, we briefly explain below how the
different terms are discretized. Recall that our discretization is uniform both in time t
and in phenotype x , with, respectively, Nt and Nx points.

• The non-local terms ρH , ρC are discretized with the rectangle method :

ρ(ti ) =
∫ 1

0
n(ti , x) dx ≈ 1

Nx

Nx−1∑

j=0

ni, j .

• The Neumann Laplacian is discretized by its classical discrete explicit counterpart
:

�n(ti , x j ) ≈ ni, j+1 − 2ni, j + ni, j−1

(�x)2
.

We manage to take Nt large enough to make sure that the CFL

βCT
(Nx )

2

Nt
<

1

2
,

is verified. Using an implicit discretization could allow us to get rid of the CFL
condition, but an implicit scheme happens to be more time-consuming. There-
fore, we preferred using an explicit discretization, as our procedure enables us to
discretize the equations finely enough to satisfy the CFL.

• The selection term (whose sign can be both positive or negative) is discretized
through an implicit–explicit scheme to ensure unconditional stability.

Sketch of the Algorithm
Step 1Westart the continuation by solving (OCP0). Thanks to the result 3.1, finding the
minimizer of the end-point mapping (u1, u2) �−→ ρC (T ) is equivalent to finding the
minimizer of the application (t1, t2) �−→ ρC (T ) where t1 (resp. t2) are the switching
times of u1 (resp. u2) from 0 to umax

1 (resp. umax
2 ), as introduced in Theorem 3.1.

Numerically, we can use an arbitrarily refined discretization of (OCP0), since the
resulting optimization problem has to be made on a R2-valued function, which leads
to a quick and efficient resolution.

Step 2 Once (OCP0) has been solved numerically, we get an excellent initial guess
to start performing the continuation on the parameter λ. Its different components will
successively be brought from 0 to 1 (except for λ0 which will be brought from 0 to its
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final desired value), either directly or, when needed, through a proper discretization of
the interval [0, 1]. The order in which the successive coefficients are brought to their
actual values is chosen so as to reduce the runtime of the algorithm. The precise order
and way in which the continuation has been carried out are detailed together with the
numerical results in Sect. 4.

Let us make one remark on a possible further continuation: Since the goal is to take
large values for T , one might think of performing a continuation on the final time. We
again emphasize that the interest and coherence of the method requires to start with
a fine discretization at Step 1, but we note that it is also possible to further refine the
discretization after Step 2.

5 Numerical Results

Let us now apply the algorithm with AMPL [3] and IPOPT [4].
For our numerical experiments, we will use the following values, taken from [2]:

rC (x) = 3

1 + x2
, rH (x) = 1.5

1 + x2
,

dC (x) = 1

2
(1 − 0.3x), dH (x) = 1

2
(1 − 0.1x),

aHH = 1, aCC = 1, aHC = 0.07, acH = 0.01

αH = 0.01, αC = 1,

μH = 0.2

0.72 + x2
, μC = max

(
0.9

0.72 + 0.6x2
− 1, 0

)
,

umax
1 = 2, umax

2 = 5.

One can find in [1] a discussion on the choice of the functions μH and μC . Also,
we consider the initial data:

nH (0, x) = KH ,0 exp

(
− (x − 0.5)2

ε

)
, nC (0, x) = KC,0 exp

(
− (x − 0.5)2

ε

)
,

(10)
with ε = 0.1 and KH ,0 and KC,0 are chosen such that:

ρH (0) = 2.7, ρC (0) = 0.5.

The rest of the parameters (namely βH , βC , θH and θHC) will depend on the case
we consider, and we will specify them in what follows.

Remark 5.1 Note that the initial condition (10) for the healthy and cancer cells—
a Gaussian density centered at 0.5—models a highly heterogeneous tumor, where
resistance to the treatment is already present. Such a choice has been made because
in the clinic, cytotoxic drugs are often given upfront. Our optimal strategy would
therefore take place after this automatic administration of drugs.
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Remark 5.2 Note also that we have taken umax
1 and umax

2 to be slightly below their
values chosen in [1] (which makes the problem harder from the applicative point of
view). This is because we are here able to let T take larger values, for which the final
cost obtained with the optimal strategy ρC (T ) becomes too small, see below for the
related numerical difficulties.

As for the epimutations rates, we have proceeded as follows:We have simulated the
effect of constant doses andobserved the long-timebehavior. In the caseβH = βC = 0,
we know by [1] that both cell densitiesmust converge toDiracmasses.Withmutations,
we expect some Gaussian-like approximation of these Diracs, the variance of which
was our criterion to select a suitable epimutation rate in terms of modeling. It must be
large enough to observe a real variability due to the epimutations, but small enough
to avoid seeing no selection effects (diffusion dominates and the steady state looks
almost constant).

Test Case 1 T = 60 and λ0 = 0. We recall that this case corresponds to the example
presented in [1], to which we add a diffusion term. We set the parameters for the
diffusion to βH = 0.001 and βC = 0.0001. The coefficients for the constraints are
θHC = 0.4 and θH = 0.6. For such numerical values, the optimal cost satisfies
ρC (T )  1, which can be source of numerical difficulties. To overcome this, we
introduce the following trick: Let us define umax,0

1 = 1 and umax,0
2 = 4. We apply

the procedure described in Sect. 3 with the values umax,0
1 and umax,0

2 . We then add
another continuation step by raising them to the original desired values umax

1 = 2
and umax

2 = 5. In the formalism previously introduced, it amounts to adding two
continuation parameters λ5 and λ6 to the vector λ = (λi )1�i�4. (As we are interested
in solving the problem for λ0 = 0 in the cost (1), we forget it in the notation of the
vector λ.) The parameters associated with the optimal control problem (OCPλ) are
then defined as :

umax,(λ)
1 := (1 − λ5)u

max,0
1 + λ5u

max
1 , umax,(λ)

2 := (1 − λ6)u
max,0
2 + λ6u

max
2 .

More precisely, we perform the continuation in the following way, summarized in
Fig. 1:

• First, we solve (OCP0), with u
max,0
1 = 1 and umax,0

2 = 4.
• Second, we add the interaction between the two populations, the diffusion param-
eters, and the constraint on the number of healthy cells. That is, the parameters
aCH , βH , βC and θH are set to their values.

• Then, we add the constraint measuring the ratio between the number of healthy
cells and the total number of cells, that is θHC .

• Lastly, we raise the maximum values for the controls from umax,0
i to umax

i (i ∈
{1, 2}), and we solve (OCP1) for T = 60.

Actually, for this set of parameters, only four consecutive resolutions are required
to solve (OCP1) starting from (OCP0). That is, the components of the continuation
vector λ = (λi )1�i�6 are brought directly from 0 to 1, taking no intermediate value,
in the order schematized in Fig. 1. We will study further in the paper a case for a larger
final time, for which having a more refined discretization is mandatory.
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(OCP0)

aCH = 0.01
βC = 10−3

βH = 10−3

θH = 0.6

θHC = 0.4
umax
1 = 2

umax
2 = 5
(OCP1)

Fig. 1 Continuation procedure to solve (OCP1) for T = 60
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Fig. 2 Intermediate steps of the continuation procedure for the test case 1

In Fig. 2, we plot the optimal controls u1 and u2 at the four steps of the continuation
procedure. We also display the evolution of the constraint on the size of the tumor
compared to the healthy tissue (2). We can clearly identify the emergence of the
expected structure for the controls, namely a long phase along which the constraint
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(2) saturates, followed by a bang arc with u1 = umax
1 and u2 = umax

2 , and a last
boundary arc along which the constraint (3) saturates. Throughout this section, we
will use a red solid line in our figures for (OCP1), a light green solid line for (OCP0)

and colors varying from green to blue for anything referring to (OCPλ).

Remark 5.3 We would like to emphasize here that our procedure enables us to use
a much more refined discretization of the problem than what was done in [1]. More
precisely, we discretize with Nt = 500 and Nx = 20 points in our direct method. For
such a discretization, directly tackling (OCP1) with the direct method fails.

Remark 5.4 Note that the constraint ρH/ρH (0) > 0.6 does not saturate until the last
step of the continuation, when raising the maximal value of the controls. Therefore,
when we add it at the beginning of the procedure, it is not actually active.

Test Case 2 T = 80 with λ0 = 0. Whereas one could believe that raising the final
time from T = 60 to T = 80 does not much increase the difficulty of the problem,
we noticed that several numerical obstacles appeared. In the following, we consider a
discretization with Nt = 250 and Nx = 12 points, in order to keep the optimization
runtime reasonable. Besides, in order to test the robustness of our procedure, we
consider more restrictive constraints on the density of cells: we choose θH = 0.75 in
(3) (0.6 in the first example), and we also consider θHC = 0.6 in (2) (0.4 in the first
example). Note that setting a higher value for θHC means that the density of cancer
cells is to be maintained below a lower level during the treatment.

First, we use the same numerical trick as explained in our first example, reducing
the maximal value for the controls to umax,0

1 = 0.7 and umax,0
2 = 3.5. For given values

of umax
1 and umax

2 , the optimal cost ρC (T ) decreases when T increases. This is why

we now use smaller values of umax,0
1 and umax,0

2 , compared to the first example where
we set them to, respectively, 1 and 4.

We performed the continuation in the following way, summarized in Fig. 3:

• First, we solve (OCP0), with u
max,0
1 = 0.7 and umax,0

2 = 3.5.
• Second, we add the interaction between the two populations (via the parameter
aCH ), and the constraint measuring the ratio between the number of healthy cells
and the total number of cells (2) is introduced at the intermediate value θ

(λ)
HC = 0.3.

• We then raise it to its final value of θHC = 0.6.
• As a fourth step, we simultaneously add the constraint (3) on the healthy cells and
raise the maximal values for the controls from umax,0

i to umax
i (i ∈ {1, 2}).

• Lastly, we add diffusion to the model, via the parameters βH and βC , and we solve
(OCP1) for T = 80.

At this point, we need to make two important remarks concerning this continuation
procedure.

Remark 5.5 The order in which we make the components of the continuation vector
λ = (λi )1�i�6 vary from0 to 1 is different from the orderwepresented for T = 60. For
instance, we noticed that the diffusionmakes the problem significantly harder to solve,
although the Laplacians were discretized using the simplest explicit finite-difference
approximation. Therefore, we only added it at the last step of the continuation.
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(OCP0)
aCH = 0.01
θHC = 0.3

θHC = 0.6

umax
1 = 2

umax
2 = 5

θH = 0.75

(OCP1)
βH = 10−3

βC = 10−4

Fig. 3 Continuation procedure to solve (OCP1) for T = 80

Whereas for T = 60, raising the (λi )1�i�6 directly from 0 to 1 was enough to solve
(OCP1), it became necessary to use a more refined discretization for T = 80. This
fact justifies the principle of our continuation procedure, as each step is necessary to
solve the next one, and thus (OCP1) in the end. For instance, in Fig. 4, we display the
evolution of the constraint (2):

ρH (t)

ρC (t) + ρH (t)
� λ3θHC

when raising the continuation parameter λ3 from 0 to 1. For values of λ3 increasing
from 0 to 1, the constraint (2) becomes more and more restrictive, but the continuation
procedure enables us to reach the final value θHC = 0.6. A noticeable fact is that
compared to the test case 1, higher doses of cytostatic drugs are administered during
the first phase. That is because, as pointed out before, the constraint (2) becomes more
restrictive.

In Fig. 5, we display the evolution of the controls u1 and u2 when raising their
maximal allowed values from (umax,0

1 , umax,0
2 ) to (umax

1 , umax
2 ). For the sake of read-

ability, we do not show all the steps of the continuation, but only some of them. It

123



www.manaraa.com

498 Journal of Optimization Theory and Applications (2019) 181:479–503

0 10 20 30 40 50 60 70 80

0.4

0.6

0.8

t

ρC

ρC+ρH

λ3θHC = 0
λ3θHC = 0.3
λ3θHC = 0.35
λ3θHC = 0.4
λ3θHC = 0.45
λ3θHC = 0.5
λ3θHC = 0.55
λ3θHC = 0.6

Fig. 4 Evolution of the constraint (2) during the continuation
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Fig. 5 Raising the maximal values umax
1 , umax

2 for the controls

clearly shows how the structure of the optimal solution evolves from the simple one
of (OCP0) to the much more complex one of (OCP1).

Finally, we display in Fig. 6 the evolution of nC , when applying the optimal strategy
we found solving (OCP1). One clearly sees that the optimal strategy has remained
the same: The cancer cell population concentrates on a sensitive phenotype, around
x = 0.2, which is the key idea to then use the maximal tolerated doses. In other words,
the strategy identified in the previous work [1] is robust with respect to addition of
epimutations. An important remark is that the cost obtained with the optimal strategy
is higher with the mutations than without them: This is because we cannot have con-
vergence to a Dirac located at a sensitive phenotype, but to a smoothed (Gaussian-like)
version of that Dirac. There will always be residual resistant cells which will make
the second phase less successful.

Further Comments on the Continuation Principle A continuation procedure can be
used in a wide range of applications, and one can easily imagine ways to generalize
the ideas we have previously introduced. Let us illustrate our point with an example:
We have presented a procedure to solve (OCP1), for some initial conditions n0H and
n0C . Suppose that we wish to solve (OCP1) for some different initial conditions ñ0H
and ñ0C . Biologically, this could correspond to finding a control strategy for a different

123



www.manaraa.com

Journal of Optimization Theory and Applications (2019) 181:479–503 499

0 0.2 0.4 0.6 0.8 1

0

2

4

6

x

nC

Fig. 6 Evolution of nC for the optimal solution of (OCP1). In black with a thick line, the initial condition
nC (0, ·), with lighter shades of red, the evolution of nC (t, x) as time increases. At final time, the population
of cancer cells is drawn with a thick red line

tumor. A natural idea is then to use a continuation procedure to deform the problem
from the initial conditions (n0H , n0C ) to (ñ0H , ñ0C ), rather than applying again the whole
procedure to solve (OCP1)with ñ0H and ñ0C . We successfully performed some numer-
ical tests to validate this idea: If we dispose of a set of initial conditions for which we
want to solve (OCP1), it is indeed faster to solve (OCP1) for one of them and then
perform a continuation on the initial data, rather than solving (OCP1) for each of the
initial conditions. More generally, any parameter in the model could lend itself to a
continuation.

Test Case 3 T = 60, for different values of λ0. The optimal strategy obtained with
the previous objective function ρC (T ) might seem surprising, in particular because it
advocates for very limited action at the beginning: giving no cytotoxic drugs and low
loses of cytostatic drugs. To further investigate the robustness of this strategy, let us
also consider the objective function λ0

∫ T
0 ρC (s) ds + (1 − λ0)ρC (T ) as introduced

in Remark 2.1, for different values of λ0. To ease numerical computations, we take
βH = βC = 0, umax

1 = 2, umax
2 = 5, and finally Nx = 20, Nt = 100. The results are

reported in Fig. 7.
For λ0 = 0.5 (in purple) and λ0 = 0.9 (in blue), the L1 term is dominant in the

optimization and the variations of ρC are smaller over the interval ]0, T [. However,
although there is a significant change in the control u2 which is always equal to umax

2 ,
u1 has kept the same structure: an arc with no drugs, a short arc with maximal doses
and a final arc with intermediate doses. The only (though important) difference is that
the first arc is not a long one as before: For λ0 = 0.9, the maximum dose of cytotoxic
drugs is given earlier, around t = 35, in order to have a low L1 term in the cost.
However, in this case, cytotoxic drugs are given during a longer time period, making
the tumor cells more resistant. This is supported by the representation of ρC on the
fourth graph of Fig. 7, where ρC increases during the last from t = 65 up to the end,
because of the emergence of drug-resistant cells.
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Fig. 7 Adding a term accounting for the L1 norm
∫

ρC in the cost

We infer from these numerical simulations that the optimal structure is inherent in
the equations: There is no choice but to let the cancer cell density concentrate on a
sensitive phenotype. Since at λ0 = 0.5 and λ0 = 0.9, the integral term dominates, we
also consider other convex combinations with smaller values of λ0, namely for λ0 = 0
(in red) and λ0 = 0.05 (in light purple) for which u2 takes intermediate values (and
even the maximum tolerated value during a short time when λ0 = 0.05) before being
equal to umax

2 , while u1 = 0 on a longer arc.

6 Perspectives

Theoretical Perspectives A theoretical analysis of the problem (OCP1) is completely
open. The first step in [1] in the absence of Laplacians was to analyze the asymptotic
behavior for constant infusion of drugs, in which case the limit is the sum of Dirac
masses on the fittest phenotypes (depending on the drug). With Laplacians, however,
the asymptotic analysis of the system

∂nH

∂t
(t, x) =

[
rH (x)

1 + αH ū2
− dH (x)IH (t) − ū1μH (x)

]
nH (t, x) + βH�nH (t, x),

∂nC
∂t

(t, x) =
[

rC (x)

1 + αC ū2
− dC (x)IC (t) − ū1μC (x)

]
nC (t, x) + βC�nC (t, x),

with constant controls (ū1, ū2) below is not known, up to our knowledge. Actually,
even the asymptotic analysis of a single equation of that type has not been tackled.
Note that results are available when the functions dH and dC are independent of x , as
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in [28]. The theoretical optimal control of a such a system with state constraints seems
out of reach for the moment.

For epimutations with rates in reasonable ranges, we found that the optimal strat-
egy obtained in [1] is preserved, which is a proof of its robustness. We believe that
robustness can further be tested for more complicated models, with the same strategy.

For example, onemaywant tomodel longer-rangemutations by a non-local alterna-
tive to the Laplacian, either through a mutation term through a Kernel [29], or through
a non-local operator like a fractional Laplacian [30]. These could both be added by
continuation, on the Kernel starting from the integro-differential model, or on the frac-
tional exponent for the fractional Laplacian, starting from the case of the (classical)
Laplacian.

Another (local) possibility is to choose amore general elliptic operator. In particular,
one can think of putting a drift term to model the stress-induced adaptation [31,32],
namely epimutations that occur because cells actively change their phenotype in a
certain direction depending on the environment created by the drug.

Finally, other objective functions can also be considered through a continuation
as already introduced in the present article: One minimizes a convex combination of
ρC (T ) and the objective function of interest.

We refer to [1] for other possible generalizations of the model that might be of
interest.

Numerical Perspectives For the numerics presented in this paper, we used themodeling
language AMPLwith the interior-point solver IPOPT.Most of the time, like displayed
in Fig. 4, we were able to perform the continuation with a constant step. (In Fig. 4,
two successive values of λ3θHC differ by 0.5.) For computational efficiency, one may
wish to use a refined procedure. For instance, in the case of convergence, one may try
to increase the step in the continuation procedure. On the other hand, when solving
the next optimization problem fails, the step can be decreased.

Dealing with this variability of the step could benefit from the use of the solver
IPOPT with an efficient programming language, like C or C++. Note that there exist
interfaces to use IPOPT designed for the following programming language : C++, C,
Fortran, Java, R, Matlab. We refer to the official documentation of the IPOPT project
for more details on this issue.

Besides, one could try and use a higher-order method to discretize the dynamics,
for instance, with Runge–Kutta schemes, and using the trapezoidal rule to discretize
the terms ρC and ρH . Again, implementing such a complex numerical method could
benefit from the use of one of the previously mentioned programming languages.

7 Conclusions

The objective of the present work was to numerically solve an optimal control general-
izing the one studied in the article [1], in which epimutations were neglected. We have
developed an approachwhich significantly reduces the computation time and improves
precision, even without mutations. More precisely, by setting enough parameters to
0 in the original optimal control problem, we arrive to a situation where the problem
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can be tackled by a Pontryagin’s maximum principle in infinite dimension. Direct
methods and continuation then allow to solve the problem of interest, with the strong
improvement that we actually start the continuation with a very refined discretization.

We advocate that this approach is suitable for many complicated optimal controls
problems. This would be the case as soon as an appropriate simplification leads to
a problem for which precise results can be obtained by a PMP. In particular, this
approach is an option to be investigated for optimal control problems which have a
high-dimensional discretized counterpart.
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